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ABSTRACT

In the design phase of a new launch vehicle, the stiffness budget analysis represents an essential
task. Indeed, the stiffness of each item of the launch vehicle has a fundamental impact on the
definition of the global bending modes’ parameters and on the fulfilment of the launch vehicle
stability requirements. This article focuses on a sensitivity analysis obtained by varying each
structural item’s stiffness and computing the launch vehicle worst-case stability margins.
A set of stiffness budget alternates has been considered and an Linear Fractional Representation
(LFR) of the launch vehicle has been defined for each different design case. With this set-up, the
structural stiffness needs have been verified with respect to the control related requirements and,
for each case, a tuning of the bending filter has been performed using structured H∞.
The proposed analysis allows to graphically assess which parameters mostly affect the fundamen-
tal bending modes’ eigenfrequencies and shapes and to approximate the impact of stiffness budget
changes in terms of launch vehicle performance in view of mass saving optimizations.
The VEGA-E (Evolution) launcher has been considered as a benchmark for the proposed design
methodology.

1 INTRODUCTION

In the preliminary design of launch vehicles, the mass budget is of premium concern. Tsiolkovsky’s
equation shows that the more lightweight is the final mass after a boost, the higher are the expected
performances. An important fraction of the final mass is provided by the launcher structure. The
structural design needs to focus on several aspects, such as transportation, assembly, ground aerody-
namic loads, lift-off loads, and various instabilities like coupled structure-propulsion instabilities or
resonant burns in solid rocket motors. Additionally, transient engine dynamics, pyro shocks, as well
as acoustic and thermal effects should also be taken into account. Ultimately, this leads to three major
structural concerns:

1. strength and therefore the structure’s resistance to a possible mechanical failure due to yielding
under given load conditions

2. structural stability in order to prevent a structural item from a catastrophic collapse under load;

3. stiffness as it impacts the vehicle natural frequencies and global bending modes that can effect
stability in flight.
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However, it is common practice to not consider stiffness as a design driver for a multistage rocket[12][18].
A typical design process would be that described in Fig. 1. The design drivers are typically coming
from strength since structural stability is usually less sizing. As outlined in [12], the process in Fig.
1 is usually ”protected” by a requirement on the fundamental mode’s eigenfrequency that is required
to be sufficiently higher than the launcher rigid dynamics’ bandwidth frequency during flight. This
kind of analysis yields a controllability constraint, yet such a constraint can only be verified once the
structural design is defined, since it is relevant to the computation of the global bending modes. Con-
sequently, if important inconsistencies arise in terms of controllability, the impact on the masses may
be such to justify a new design loop at system level. More likely, especially when a certain degree
of know-how is applicable, design refinements or trade-off analyses can be carried out to optimize
the launcher performance or correct losses of margins that could arise in the design iterations. The
approach presented in this paper is intended to ease such work.
It has been questioned during VEGA-E’s phase-B how the recent development of robust control
methodologies [9][14] and advanced modelling tools such as linear fractional representations (LFRs)
[6] could support the process described in Fig. 1 for what concerns the fulfillment of stiffness and sta-
bility requirements, possibly improving the performance of the launcher with a mass saving strategy.
Indeed, LFRs and robust control methodologies have successfully been applied in co-design activi-
ties. In [5], it has been shown, by means of flight data, that LFRs robustly allow to predict the flutter
envelope on the F-16A/B in Heavy Store configuration. In [11], a co-design of a large satellite flexible
structure has been carried out by applying LFR modelling and designing a robust reduced order H∞
controller to meet pointing and mass requirements. This work paved the way for the development of
a specific Satellite Dynamics Toolbox for preliminary design phases [16].
As for launchers, a lot of research has been carried out in the past years in Europe [10]: [13] has
shown how LFRs can be applied to carry out structured singular value analysis on the VEGA launch
vehicle and [15] has proven the possibility to carry out structured-H∞ tuning with an LFR of a launch
vehicle.
Given these very promising results, an advanced design tool has been recently developed [19]. This
tool also provides further insight and understanding of the underlying fundamental design trade-offs
at system level, allowing a robust definition and justification of such system requirements. It includes
also the definition of a formal approach for uncertainty quantification and modelling, blending to-
gether statistical interpretations, system-level margins and a control-theoretic understanding by using
LFRs. By defining a generic multichannel design model, all high-level technical specifications for the
control system are mathematically formalized, enabling robust optimization and worst case analysis.
Specific practical difficulties for an effective industrialization, such as the need to smoothly schedule
the control laws, controller discretization and the issue of dimensionality have been fully addressed
with efficient workarounds.
In this paper, such tool has been used to compute a set of LFRs for various stiffness budget variants
and automatically assess the impact on the launcher stability margins. In particular, this activity was
aimed at finding stiffness margins on each item of the stiffness budget in terms of controllability, in
order to provide immediate understanding of the impacts of design alternates arising from trade-off
studies driven by other criteria.
The paper is organized as follows. In Section 2, a sensitivity analysis of the stiffness items has been
performed to assess the impact of stiffness variations on the global bending modes (frequencies and
shapes). In Section 3, each of such alternate of global bending modes has been processed in the robust
control and modelling tool to assess the impact on the stability margins, allowing to provide specific
constraints for each structural sub-part. Section 4 presents a general trade-off analysis showing the
impact of a stiffness variation both in terms of stability margins and launcher performance improve-
ment. Finally, conclusions are drawn in Section 5.
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Figure 1: Typical System Design Cycle

2 BENDING MODES’ SENSITIVITY TO STIFFNESS BUDGET

During the early phases of a launch vehicle development, when the structural properties are not yet
well defined, it is of primary importance to have simplified models which allow to understand rapidly
and efficiently how the launcher’s global performance are affected by its driving parameters. Since a
high fidelity 3D Finite Element Model (FEM) is not available in such phases, the bending modal prop-
erties can be assessed with a simplified 1D-beam Euler-Bernoulli theory. Indeed, since the launcher
is a structure with an axial dimension significantly larger than the others, this theory represents a
powerful tool for such preliminary assessments. The launch vehicle has been divided into several
subsystems (e.g. stages and interstages) modelled as a series of 1D beams with known stiffness and
mass properties, as illustrated in Fig. 2.

Figure 2: LV Simplified Model with 1D Beams

Thus, for each beam element, the Euler-Lagrange equation can be computed:
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+ ρA

∂2v(x, t)

∂t2
= py(x, t) (1)

where x represents the axial direction, v (x, t) is the deformation along the y direction at time t and
py (x, t) is the vertical load per unit length.
Since bending mode analysis is carried out under free vibration conditions, py (x, t) is null. Moreover,
each sub-system (S/S) is assumed to have a constant stiffness EI , for the sake of simplicity.
The general solution of Eq.1 is of the kind: v (x, t) = Re [Y (x) e−iωt]. Thus, by substituting the
solution in Eq. 1, the following spatial problem can be analysed:

Y IV (x)− λY (x) = 0 (2)

where λ = ω2EI
ρA

. The general solution of Eq. 2 can be written as:

Y (x) = A sinh(λx) +B cosh(λx) + C sin(λx) +D cos(λx) (3)

For a multi-beam body, the above equation shall consider the whole set of sub-structures. Therefore,
if Nss is the total number of beams, Eq. 4 holds:

Y (x) =
Nss∑
m=1

(Am sinh(λmxm) +Bm cosh(λmxm) + Cm sin(λmxm) +Dm cos(λmxm)) (4)

with 4×Nss constants which can be evaluated by imposing the same number of boundary conditions
(BCs). For the external boundary points, the following BCs can be written (free-free BCs):

• Null momentum: EmImY
II
m (xm) = 0 at xm = 0 and xm = Ltot

• Null shear: EmImY
III
m (xm) = 0 at xm = 0 and xm = Ltot

Whereas, for the internal boundary points:

• Continuity of displacement between two adjacent beams: Ym(xm) = Ym+1(0)

• Continuity of rotation between two adjacent beams: Y I
m(xm) = Y I

m+1(0)

• Balance of momentum between two adjacent beams: EmImY
II
m (xm)+Em+1Im+1Y

II
m+1(0) = 0

• Balance of shear between two adjacent beams: EmImY
III
m (xm)− Em+1Im+1Y

III
m+1(0) = 0

Solving the corresponding eigenvalue problem, the bending natural frequencies and shapes can be
evaluated.
The above 1D theory is very suitable to perform a sensitivity analysis. At this purpose, starting from a
nominal setting, the stiffness of each sub-system has been varied in the range [-20%,20%] with respect
to its nominal value. Then, the properties which mostly impact the launcher’s flexible behaviour, have
been collected.
Fig. 3 shows, for example, how the S/Ss stiffness variations affect the first bending frequency. Similar
figures can be obtained for the other modal parameters.
For the present study, the aforementioned modelling has been employed to conduct a sensitivity anal-
ysis of the modal parameters to the S/Ss stiffness variations. For this scope it is not needed to analyse
the bending parameters for the whole trajectory. It is sufficient to analyse the worst case condition
from a controllability point of view, given by the worst-case ratio between aerodynamic efficiency
and thrust efficiency.
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Figure 3: 1st Bending Frequency Sensitivity to S/S Stiffness Variation

3 ROBUSTNESS TO STIFFNESS BUDGET ALTERNATES

With the set-up described in the previous section, the structural stiffness needs have been verified with
respect to the control related requirements by examining all the considered data sets from the stability
point of view.
The task of stabilizing a launch vehicle is assigned to the Thrust Vector Control (TVC) system. A
detailed description of the VEGA launcher’s control law can be found in [7]. Its architecture is
traditionally divided in two parts: the rigid-body controller, responsible for managing the rigid-body
dynamics, and the bending filter, essential for the stabilization of the bending modes. The VEGA-E
launcher has inherited this type of control architecture from its predecessors.
The main task of this control system is robust stabilization, since the launcher is made intrinsically
unstable by the aerodynamic torque. At this purpose, high-level stability requirements have been de-
fined.
Among these requirements, three specifications are imposed on the rigid-body dynamics: the Low
Frequency Gain Margin (LFGM), the Low Frequency Delay Margin (LFDM), and the High Fre-
quency Gain Margin (HFGM). Whereas, the remaining two specifications are applied to the flexible-
body dynamics: the First Bending Mode Delay Margin and the Upper Bending Modes’ Attenuation
(BMU Att). All such high-level technical specifications are expressed as ”stability margins”, rep-
resenting the distance from a critical point which signifies instability. As shown in Fig. 4, these
specifications can be easily visualized on a Nichols Chart, which lends itself well to the verification
of this type of requirements.
The stiffness of each item of the launch vehicle has an impact mainly on its flexible dynamics, and
so on the definition of the bending modes’ frequencies and shapes. At this purpose, for each case
taken under study, a tuning of the bending filter has been performed in order to check if by varying
the stiffness of a particular structural item it is still possible to satisfy the desired stability margins.
The rigid body controller has instead been kept invariant as the rigid dynamics are scarcely influenced
by stiffness variations, and also considering that a generic tuning of rigid gains and filters is already
available in the framework of the VEGA E launcher.
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(a) Rigid-Body Margins (b) Flexible-Body Margins

Figure 4: Stability Requirements

The challenge of controlling the flexible dynamics of a launch vehicle is given by the close prox-
imity of the first bending mode frequency to the rigid-body control bandwidth. Indeed, the bending
filter must be able to notch the bending modes without worsening the stability and performance goals
achieved by the rigid-body controller. It is important to note that by decreasing the stiffness of each
element, this task becomes more and more difficult as the first bending mode approaches the rigid
body bandwidth. Moreover, the assignment of satisfying stability requirements needs to be extended
beyond nominal conditions, encompassing all potential non-nominal scenarios, which include para-
metric uncertainties and disturbances. Hence, the use of a robust control techniques, including LFR
modeling and structured H∞ control [14], have been deemed appropriate, thanks to their demonstrated
effectiveness in handling such uncertain systems.

3.1 LINEAR FRACTIONAL REPRESENTATION OF A LAUNCH VEHICLE

An LFR of the launch vehicle has been defined in order to explicitly include in the plant design all the
system uncertainties and the information about how the launcher parameters are correlated to each
other.
The process needed to obtain an LFR of a launch vehicle is summarized in the following steps [19]:

1. Collect and standardize the available data packages in order to define all the input scatterings
either as percentage, range or plus-minus scatterings.

2. Perform a Monte-Carlo analysis in order to grasp uncertainties arising from trajectory disper-
sions.

3. Extract correlation between input scatterings and output parametric dispersions.

The primary objective of an LFR is precisely to establish the relationships between the input funda-
mental scatterings that affect the trajectory and the output parameters.
In order to determine the level of correlation between each output and its corresponding input scatter-
ings, Pearson Correlation Coefficients (PCC) [2] have been computed for each parameter at constant
Non-Gravitational Velocity (VNG), which is the controller’s scheduling variable [7]. Then, by set-
ting a threshold on the PCC values, the dominant correlations have been identified. A simple linear
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regression model is used to represent such dependencies:

ŷ = y0 +
r − r

2
+

ni∑
i=1

δxiβ̂i +
r + r

2
δry (5)

where two sets of uncertain parameters “enter” the ∆ of the LFR: the ”fundamental” scatterings δxi
and the residual scatterings δry.
As shown in Eq. 5, it is not recommended to disregard the residual scattering, as it may yield a
significant impact, particularly when none of the fundamental input scatterings exert a dominant in-
fluence. Therefore, residuals whose H∞ norm exceed a predefined threshold have been considered as
independent scatterings. This approach for the design of LFRs appears always as a balance between
two thresholds [19]: the threshold on the PCCs that quantify how many dependencies are to be mod-
elled and the threshold on the residuals. By reducing the threshold on the PCCs, a greater number
of dependencies are incorporated into the model, resulting in decreasing residuals and reduced con-
servatism. Similarly, by raising the threshold on the residuals the number of uncorrelated dispersions
included in the model decreases, again reducing conservatism. Nevertheless, it is important to prevent
the dimensions of the LFR from becoming excessively large. This can result in numerical errors and
an excessive computational burden.
Each output parameter in Eq. 5 is finally constructed as a Redheffer star product of two systems: a
completely nominal matrix and a completely uncertain matrix. By including all such parameters in
the generalized state-space model, the launcher LFR is obtained as a Redheffer connection of a real
diagonal uncertain matrix ∆ and a nominal plant M .

3.2 BENDING FILTER TUNING

As explained in the previous sections, the stiffness of each subsystem has been systematically varied
within the range [-20%,20%] and an uncertain LFR of the launch vehicle has been defined for each
design case. All such cases have been examined from the stability point of view, by performing a
tuning of the bending filter using structured H∞.
The slosh masses, according to the reduced-body approach [17], are removed from the FEM. Thus,
the bending parameters related to each stiffness alternate have been computed considering three dif-
ferent values of slosh masses (minimum, nominal and maximum) to take into account slosh modelling
uncertainties. Nevertheless, due to the fact that the three sloshing cases essentially represent the same
design scenario, a unique tuning of the bending filter has been performed to encompass the dispersed
sloshing parameters.
The analyses have been repeated for two sizing payloads (PLs) and trajectories as the payload mass
is another factor that adds variability to the bending modes.
The goal is to find the optimal tuning parameters that satisfy the specified stability requirements. Yet,
to perform optimization it is needed to robustly formalize the design requirements into mathematical
functions. Indeed, all high-level technical specifications are translated into constraint functions g or
objective functions f , all modelled as weighted H∞ low-level requirements on appropriately selected
channels of the generalized state space model. This dynamic programming problem can be seen as a
sequence of two sub-problems of the form:

min
x

max
δ

(αf(x, δ), g(x, δ)) (6)

where x is a given vector of tunable parameters in the control law, δ is a set of uncertain parameters
in the design model, f is the worst case objective function norm and g is the worst case constraint
function norm.
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Figure 5: Closed-Loop System

Given its efficiency in the management of uncertain systems, SYSTUNE [14] has been identified as
a suitable solver for this optimization problem. To accomplish this task, it dynamically adjusts the
multiplier α until the solution of the subproblem converges to the solution of the original constrained
optimization problem.
The subproblem,

max
δ

(f(δ)) (7)

is what we refer to as worst case (WC) analysis and is verified one requirement f(δ) at a time. At this
purpose, the high level requirements in Fig. 4 are translated into H∞ low level requirements over a
given set of inputs and outputs of the closed-loop system model, illustrated in Fig. 5.
As can be noted, this multi-channel design model is composed of two main blocks:

• the controller sys gnc which contains a non-tunable part, that is the rigid-body controller KR

and a tunable part, namely the bending filter KB

• the plant sys physics which contains the LFRs of the launch vehicle including the TVC subsys-
tem.

The channels highlighted in red and blue are respectively the input sensitivity function Si and the
input complementary sensitivity function Ti. These two functions are essential for incorporating the
stability requirements directly in the control design[1]. The translation from high-level requirements
to low level requirements is summarized in Table 1 and makes use of the analytic link between the
gain margin (GM) or phase margin (PM) and the H∞ norm of the input sensitivity and complementary
sensitivity functions, respectively |Sβ0−→βc |∞ and |Tβ0−→β′

c
|∞ [3]. However, the fact that the analytic

link is explicit, should not suggest the reader that the low level requirements are exactly equal to the
high level ones. The latter, in fact, being defined as purely gain or phase margins, do not need to be
specified in a particular frequency range. Whereas, while verifying the low-level requirements, the
WC norm may also be found at a frequency different than the crossover frequency of the stability
margin. For this reason, as shown in Table 1, each metric is defined in a pertinent frequency range.
This provides additional robustness as it allows to define a margin that contemplates mixed gain-phase
perturbations.
Moreover, looking at Fig. 4, it should be noticed that the requirement on the upper bending modes is
traditionally defined as an open loop requirement and not as a classical gain margin. Indeed, it is a
requirement imposed on the magnitude of the open-loop function L. For this reason, it can be only
translated in a low level requirement on the input complementary sensitivity function.
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Table 1: Low Level Requirements

Metrics Low Level Requirements Frequency Range

LFGM |Sβ0−→βc|∞ ≤ | GM
GM−1

| |Tβ0−→β′
c
|∞ ≤ | 1

GM−1
| f ≤ fDM

LFDM |Sβ0−→βc |∞ ≤ | 1
2 sin PM

2

| |Tβ0−→β′
c
|∞ ≤ | 1

2 sin PM
2

| fDM < f ≤ fDM

HFGM |Sβ0−→βc|∞ ≤ | GM
GM−1

| |Tβ0−→β′
c
|∞ ≤ | 1

GM−1
| fDM < f ≤ fHF

BM1DM |Sβ0−→βc |∞ ≤ | 1
2 sin PM

2

| |Tβ0−→β′
c
|∞ ≤ | 1

2 sin PM
2

| fHF < f ≤ fBM1

BMU Att. |Tβ0−→β′
c
|∞ ≤ | L

1+L
| fBM1 < f ≤ fNyquist

Regarding the tuning process, the bending filter has been parameterized in order to have a fixed
structure. Thus, the control problem falls within the realm of the structured H∞ techniques [8]. This
approach enables us to overcome the limitations associated with the traditional unstructured H∞,
which often yield a full-order controller that is challenging to comprehend and implement within a
specific practical control architecture. Moreover, traditional unstructured H∞ may return solutions
that prove to be fragile [4] when interpolating the control law against the scheduling variable.
The structure of the tunable bending filter is presented in Eq 8. It has been factorized into multi-
ple second-order notch filters. Each cell has been parameterized using two variables: ηA and ηB,
which determine the notch filter width and attenuation at the central frequency. The numerator and
denominator frequencies have been selected to center each 2nd order filter around the expected dis-
persed modal frequencies. Actually, the filters’ frequencies have been set as not tunable. This choice
is done essentially to simplify the optimization problem. If a more complete tuning will be carried
out, in any case, some considerations on structural stability need to be taken into account in order to
avoid problems related to polynomial degeneracy. For the same reason, the free parameters have been
constrained to vary in a limited range.

KB(s) =
N∏
i=1

s2

ω2
Ai

+ 2 ηAi

ωAi
s+ 1

s2

ω2
Bi

+ 2 ηBi

ωBi
s+ 1

(8)

Fig. 6 illustrates the shape of the tunable bending filter and how it can vary modifying its tunable pa-
rameters. During the optimization, the solver converts each tuning goal into a normalized scalar value
and adjusts the tunable parameters to minimize the H∞ norms related to the requirements defined in
Table 1. Each requirement is intended to be fulfilled if the related norm is less than 1.

4 STABILITY AND PERFORMANCE SENSITIVITY TO STIFFNESS BUDGET

An extensive analysis has been carried out to assess the stability of the launch vehicle in a broad
spectrum of scenarios. The stiffness of each component was considered at its minimum, nominal, and
maximum value for both the examined PL configurations. Remarkably, all the analyzed cases have
given satisfactory results from the stability point of view. Indeed, for each case it has been possible
to identify a suitable tuning configuration able to meet the imposed stability requirements.
Normalized results, which provide a standardized representation of the data, have been documented in
Figs. 7 and 8. These spider plots illustrate the stability and performance metrics in a comprehensive
and visually informative manner, enabling a detailed analysis of the obtained outcomes. Although the
sensitivity analysis has been conducted on all main components of the launcher (Interstage 0-1, Stage
1, Interstage 1-2, Stage 2, Interstage 2-3, Stage 3), for the sake of brevity, only the figures related to the
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Figure 6: Tunable Bending Filter

upper components, specifically the Interstage 2-3 and the third stage, are here reported. This selection
was made considering that the configuration of these two elements is currently in the design phase.
On the contrary, the remaining components are inherited from previous launcher (VEGA-C) and their
redesign is not being considered at present. However, for the purpose of comprehensive analysis,
similar figures have been generated for all other subsystems, yielding analogous conclusions.
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Figure 7: Sensitivity to Interstage 2-3 Stiffness Variations

It is worth noting from Figs. 7 and 8 that, as expected, as the stiffness of the subsystems decreases,
the tuning of the bending filter becomes increasingly challenging, leading to reduced stability mar-
gins. To simplify the understanding of these plots, the norm related to the LFGM has been omitted
since it cannot be influenced in any way by the tuning of the bending filter, which in fact does not act
at very low frequencies. By examining these plots, immediate considerations can be made. Firstly,
it can be noted that the High Frequency Gain Margin is the most penalized one as the norm associ-
ated to this requirement is close to 1. This outcome can be mainly attributed to the proximity of the
first bending mode to the rigid-body bandwidth. Moreover, the reduction in stiffness has a relatively
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Figure 8: Sensitivity to Stage 3 Stiffness Variations

small impact on the rigid margins. In fact, the norms indicating the compliance with these require-
ments only exhibit slight variations among the cases of minimum, nominal, and maximum stiffness.
However, reasonably it can be noted that as the stiffness decreases, the norm on these requirements in-
creases, indicating a reduction of the stability margins due to the progressive lowering the first modal
frequency. On the contrary, the stiffness variations predominantly influence the margins related to
the flexible-body dynamics, such as the First Bending Mode Delay Margin and especially the Upper
Bending Modes Attenuation. On these specifications, however, the margin is large enough to allow
the solver to always find a good trade-off and ensure the fulfilment of all requirements.
In addition to assessing the structural stiffness variations with respect to control stability requirements,
their impact on the launch vehicle performance has been examined. Notably, one of the vertices of the
spider plots represents a norm related to the PL mass variation corresponding to each stiffness case.
This norm serves as an indicator of the predicted delta performance, which is calculated using the
performance derivatives. This delta is determined by assuming a linear correlation between stiffness
variation and structural mass variation. Consequently, the minimum stiffness always corresponds to
the maximum PL mass gain, although the specific ratio is determined by the linear correlation.

5 CONCLUSIONS

In conclusion, this article discusses how stiffness acts as a design driver for launch vehicles, along
with strength and structural stability. In the design phase of a new launch vehicle, in fact, the mass
budget is crucial, and the structural design plays a significant role in determining the final mass and
the expected performance.
Traditionally, stiffness has not been considered a design driver for multistage rockets. However,
recent developments in robust control methodologies and advanced modeling tools, such as Linear
Fractional Representations (LFRs), enable new opportunities to improve the design process and opti-
mize launcher performance while ensuring the fulfillment of stability requirements.
The article presents an advanced design methodology that makes use of LFRs and robust control
techniques to assess the impact of stiffness variations on launcher stability margins.
The analyses carried out in this context are thoroughly described, encompassing the sensitivity analy-
sis of stiffness variations on the global bending modes, the process of obtaining an LFR of the launch
vehicle and the methodology used for the bending filter tuning. Finally a trade-off analysis of stiffness
variations in terms of stability margins and launcher performance improvement is presented.
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This kind of analysis enables the possibility to carry out mass-saving activities and structural op-
timization knowing the limitations given by the control system. Moreover, it allows to assess the
impact of stiffness variations that are driven by other design drivers, providing useful insight to the
system engineering of a launch vehicle.
In summary, results highlight that, within the range of explored stiffness variations, the required
stability margins are consistently guaranteed. Additionally, certain examined cases show potential for
increasing the performance of the launch vehicle, provided that the other structural design concerns
are fulfilled (i.e.: load analysis).
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