

ESA GNC-ICATT 2023 – Waldemar Martens et al

1

SALTO: AN EXPERT-INFORMED GLOBAL TRAJECTORY DESIGN AND

OPTIMISATION TOOLKIT

Waldemar Martens (1), Johannes Schoenmaekers (1), Gábor Varga (2), Colin Baumgard (3), Olga

Ramírez Torralba (4), Pablo Muñoz (1), Moritz von Looz (1)

(1) ESA/ESOC, Robert-Bosch-Str. 5, 64293 Darmstadt, Germany, waldemar.martens@esa.int

(2)IMS Space Consultancy, Am Steinern Kreuz 26, 64297 Darmstadt
(3) CS Group - Germany GmbH, Berliner Allee 65 D-64295 Darmstadt, Germany

(4) Solenix Engineering GmbH, Spreestr. 3, 64295 Darmstadt, Germany

ABSTRACT

A novel trajectory design algorithm suitable for interplanetary, lunar and libration

point missions with high and low thrust is described. Unlike techniques that aim at

generating initial guesses in a problem-agnostic way, the method proposed here is

fully tailored to the trajectory design problem and exploits expert insight in orbital

motion.

The Python implementation of this algorithm, called SALTO (Search Algorithm using

Linked Trajectory Optimisation), is based on two main ideas.

Firstly, the initial guess is only required to solve the problem from an energetic

perspective and does not need to solve the phasing problem yet. This allows for large

state and time gaps along the trajectory, which are systematically closed in a second

step that exploits time shifts by full orbital periods and/or body rotations.

Secondly, the algorithm is not expected to autonomously find all local minima in the

cost function. Instead, the user defines "tags," or category variables, that guide

SALTO's search for solutions by indicating the expected structure of the search space.

SALTO is developed at ESOC as part of the MIDAS package and is Community Open

Source (ESA Community License).

1 INTRODUCTION

Trajectory design for interplanetary missions is a challenging problem for which a wide range of

algorithms have been proposed and used in the past. These algorithms range from completely

problem-agnostic solvers, such as evolutionary algorithms [1], to methods that incorporate some

degree of domain knowledge, like branch and pruning [2][3][4][5]. In this paper, a novel algorithm

is presented that is at the other end of this spectrum in the sense that it is expert-informed and fully

tailored to the trajectory design problem. This algorithm was first developed at ESOC in an in-

house prototype, called SWING. It was designed for interplanetary missions with high and low-

thrust and was successfully applied for reproducing the trajectories of JUICE, SOLO, BepiColombo

and Rosetta. Later, it was realised that the method used in SWING is generalisable to a wider class

of missions, including lunar low-energy transfers, libration point missions and any combination of

these.

ESA GNC-ICATT 2023 – Waldemar Martens et al

2

This triggered the development of SALTO (Search Algorithm using Linked Trajectory

Optimisation) as a generic, user-extensible tool. SALTO is a module in the mission analysis Python

package, MIDAS, and is based on the ESOC flight dynamics infrastructure, GODOT [6][7]. It

supports the direct generation of multiple-shooting trajectories in the GODOT format from initial

guesses. These can be used in local optimisation and navigation analysis and therefore seamlessly

integrates into the end-to-end mission analysis workflow at ESOC. SALTO is freely available to the

European industry and academia as part of the MIDAS package under the ESA Community License

(Community Open Source). It is accessible through the space-codev.org platform.

The general concepts and ideas behind the SALTO algorithm will be introduced in section 2 using

the JUICE mission as an example. A more detailed look into the software implementation is then

provided in section 3. Potential use cases and ways for users to extend SALTO are discussed in

section 4, followed by conclusions and future work in section 5.

2 GENERAL CONCEPTS

The general working principles in SALTO are explained in the following using the JUICE

interplanetary transfer [8] as an example.

2.1 Non-phased Initial Guesses

To understand the SALTO algorithm, one can start by observing that optimal transfers for a given

planet sequence look close to identical in the Tisserand1 graph [9]. As an illustration for the launch-

Earth-Venus-Earth-Earth-Jupiter (launch-e1-v1-e2-e3-joi) flyby sequence, the JUICE baseline

transfer is depicted in Figure 1.

Figure 1: The JUICE baseline interplanetary transfer trajectory (left) and the corresponding path in the

Tisserand graph (right). The infinite velocity contours in the Tisserand graph are separated by 2 km/s. The

marker spacing on the contours correspond to flybys of 300 km altitude. The planet sequence is: launch, Earth

(→), Venus (→), Earth (→), Earth (→), Jupiter.

1 The Tisserand graph depicts contour lines of constant infinite velocity relative to the different planets and assumes a

planar, circular orbit model for the planets. It is a useful and widespread tool for the design of multi-gravity-assist

trajectories. To make this paper as self-contained as possible, a primer on Tisserand graphs is included in the Annex

(section 6).

https://www.space-codev.org/

ESA GNC-ICATT 2023 – Waldemar Martens et al

3

Even though the depicted transfer corresponds to specific flyby dates, any other transfer solution

with the same planet sequence will look almost indistinguishable in the Tisserand graph. This is

because the Tisserand graph shows the solution only from the energetic point of view and doesn’t

hold any information about the planet phasing and flyby dates. Therefore, it is very easy to

analytically construct transfers in the Tisserand graph when the planet sequence is given.

But how useful are such initial guesses for the construction of “phased” solutions? Note that the

path in the Tisserand graph fixes the semi-major axes and eccentricities of all intermediate orbits

during the transfer. To fully define the trajectory in a planar non-phased orbit model, the only

additional parameter that needs to be adjusted for the intermediate orbits is the argument of

perihelion. This can easily be done by solving a sequence of one-dimensional root-finding problems

for the intermediate orbits starting from the Earth-Jupiter arc and proceeding backwards towards

launch. This is a numerically fast and robust procedure, and the resulting trajectory is continuous in

space, i.e., it is almost indistinguishable from that in Figure 1 (left). However, it still assumes that

the planets are at the right position when the spacecraft arrives to do the flyby. A way of looking at

such a solution is to say that it is continuous in space, but not in time. That can be seen by plotting

the Sun distance evolution as shown in Figure 2.

Figure 2: Sun distance evolution of two Tisserand initial guesses. These have zero (left) and one (right) full

spacecraft revolutions in the e1 to v1 arc.

Here, we have fixed the Jupiter arrival date to result in a Hohmann transfer from Earth to Jupiter

and adjusted the other flyby dates to match the closest epoch where the planet is at the correct

position for the flyby. Moreover, in this step we have also moved from a planar, circular planet

model to the full ephemeris model, which is apparent from the varying Sun distance evolution of

the planets. Also, the plot already uses a numerical integration of the multiple-shooting trajectory in

a dynamical model where both the flyby body and the Sun gravities are considered. Note that the

choice of epochs done in this step is not unique! More precisely, any flyby epoch can be moved

forward or backward in time by integer numbers of planet orbital periods. Any candidate solution

resulting from such an operation will look identical in the trajectory plot (Figure 1), but will exhibit

different time gaps in the radius plot (Figure 2). This property can be used to our advantage to

construct feasible, time-continuous solutions, as will be described in the following.

The difference between the two plots in Figure 2 is the number of full spacecraft revolutions (these

are examples of “niche tags” in SALTO jargon) in the e1 to v1 arc: zero revolutions in the left plot

and one full revolution in the right plot. The initial guess fixes the true longitude of the flybys, but

not the epochs: there is a remaining ambiguity modulo full body orbital periods. Any shift of a

flyby epoch by a full body orbital period leads to another valid initial guess with different time

gaps. A shift of the launch date and e1 date by one full Earth orbital period on the left figure would

ESA GNC-ICATT 2023 – Waldemar Martens et al

4

result in a decrease of the time gap in the e1 to v1 arc and thus a better initial guess. The initial

guess in the right plot already has very small time gaps. The procedure of how to fully close these

time gaps will be described in section 2.3.

2.2 Niche Tags and Diversity of Solutions

Before delving into how to solve the phasing problem, it shall be noted that non-phased initial

guesses are created for every expected niche (local optimum) in the solution space. This is to

generate a diverse pool of solutions, rather than just one global optimum. The knowledge of where

to find these niches is drawn purely from experience and does not rely on any automatic algorithms.

E.g., in the context of multi-flyby trajectories, every arc can have an inward or outward departure

and arrival asymptote at the planets, as shown in Figure 3. Each combination of departure and

arrival directions at all the planets will lead to a qualitatively different transfer, both in terms of

geometry and timing, thus a different local optimum - or niche.

The departure direction and arrival direction are examples of “niche tags” in SALTO. Another

example is the number of full spacecraft revolutions during a transfer arc. Niche tags are used to

explicitly enumerate the different niches in the solution space where a solution is looked for.

Figure 3: Departure and arrival direction tags for the Earth-to-Jupiter transfer.

2.3 Solving the Phasing Problem

In section 2.1 it was noted that in the candidate solutions constructed so far, any flyby epoch can be

moved forward or backward in time by integer numbers of planet orbital periods. This operation

does not affect the continuity of the trajectory in space, but only alters the time gaps between the

flybys. To construct a fully continuous trajectory, an algorithm consisting of flyby epoch time shifts

and local optimisation runs is applied to the candidate solution. It starts at the Jupiter arrival epoch

and moves backwards through the trajectory towards launch. The algorithm can be summarised as

follows:

1. For the current planet, select the number of orbital periods to move the flyby epoch by. This

can be any integer (positive or negative) number. The number is called a “time shift tag”.

2. If the resulting time gap in the previous transfer arc is lower than a user-given threshold, run

a local optimisation with a matching constraint to close the time gap. If the optimisation fails

to converge, discard the previously selected time shift tag combination.

3. If the optimisation is successful, move on to the next planet in the sequence and proceed

with step 1.

ESA GNC-ICATT 2023 – Waldemar Martens et al

5

At the end of this procedure, we end up with a continuous (in both space and time) trajectory for

every feasible niche tag combination. Figure 4 shows the Sun distance evolution of such a solution.

It corresponds to the flown JUICE trajectory (with the exception that it uses a standard Earth flyby

at e1 whereas JUICE uses a combined Lunar-Earth gravity assist) and results from the initial guess

from Figure 2 (right). The initial guess from Figure 2 (left) was discarded by the algorithm, because

the time gap in the e1 to v1 arc could not be closed.

Note that a comprehensive search for trajectories in SALTO encompasses a consideration of all

possible niche tag combinations. In the JUICE example, there are 10 departure/arrival direction tags

where each can take two values (“inward” or “outward”). Even neglecting the niche tags coming

from the resonance ratios and full spacecraft revolutions, that would result in 210=1024 niche tag

combinations! An efficient implementation of the described algorithm therefore needs to discard

unfeasible tag combinations as early as possible in the process to remain practically useful.

Figure 4: Sun distance evolution of the fully converged JUICE baseline trajectory. All time gaps have been

closed by the algorithm described in the main text. The yellow box indicates all niche tag values that resulted in

this trajectory. These include the departure/arrival directions at the flybys, the full spacecraft revolutions in the

transfer arcs and the (pseudo-)resonance ratios of the Earth-to-Earth arcs.

Note that due to the nature of this algorithm, it is not limited to a particular dynamical model or a

patched conics approximation. In fact, it is very suitable for a gradual increase of fidelity, starting

with simple and fast models and moving on towards fully realistic models. Moreover, the concepts

exploited in SALTO are not limited to multi-flyby trajectories, but can be extended to any scenario

where:

1. There exists a simple and fast method for initial guess generation for one trajectory arc (e.g.

the Tisserand graph). This initial guess does not need to solve the phasing problem yet.

2. There is a periodicity in the system due to planet revolutions around the central body or

planet rotations around its axis.

ESA GNC-ICATT 2023 – Waldemar Martens et al

6

Such problems include lunar (low-energy) missions, libration point missions, moon tours and any

combination of the different types. The SALTO software package is set up in such a way as to be

agnostic about the underlying transfer problem, which allows for a high level of flexibility and

future extensibility.

3 SOFTWARE PACKAGE DESCRIPTION

This section describes the structure of the SALTO software module inside MIDAS

(midas.salto) and explains the relation between the different classes to the algorithm presented

in the previous section. More details on the software and tutorials can be found in the MIDAS

documentation [10].

The objective is to make SALTO a top-level framework that allows the user to easily concatenate

mission phases that have been designed with low-level algorithms from the midas.design

module and to convert them to a multiple-shooting trajectory configuration for further processing.

As such, SALTO is based on an abstraction of the algorithms described in the previous section.

3.1 Segments, Missions and Individuals

In SALTO, (candidate) solutions for a mission part are represented by SegmentIndividual

objects, which are concatenated to a MissionIndividual to make up an end-to-end trajectory

solution (see Figure 5). Each SegmentIndividual contains a ParameterBook and TagBook,

which, when initialised, fully define the solution.

Figure 5: SegmentIndividuals concatenated to a MissionIndividual in SALTO.

The underlying “scenario” or template for a SegmentIndividual is defined by different

Segment types. These can be configured and used to represent various mission parts, like launches,

flybys, ballistic arcs or (pseudo-)resonant arcs. Segment objects can be of two types:

StateSegment and TransferSegment. The general rule is that a Mission must contain an

alternating sequence of StateSegment and TransferSegment objects with a StateSegment

in the beginning and the end (see Figure 6). StateSegments represent a spacecraft state in any

parameterisation (Keplerian, Cartesian, Equinoctial…) and an epoch. TransferSegments

connect these StateSegments with ballistic arcs and/or manoeuvres (both high and low thrust).

Figure 6: Segments concatenated to a Mission in SALTO.

A Mission can also be constructed programmatically, but in most cases, it is more convenient to

do that from a yaml configuration file using the factory method Mission.from_config(). An

example of such a configuration file is shown in

Figure 7.

ESA GNC-ICATT 2023 – Waldemar Martens et al

7

Figure 7: The Mission configuration file (from launch up to the Venus flyby, v1) in SALTO for the JUICE

problem discussed in section 2. Each Segment configuration mainly defines the ranges and allowed values for

parameters and tags in the respective ParameterBook and TagBook.

It is important to realise that the actual (candidate) solution is represented by a

MissionIndividual in SALTO, not by a Mission. The latter functions only as a template or

blueprint that defines the mission scenario.

3.2 Segmented Problem and Phasing Problem

SALTO provides two main classes to find solutions to global trajectory optimisation problems.

These are:

• SegmentedProblem: Finds MissionIndividual solutions from scratch using

BaseSegmentGuessGenerator child classes. This corresponds to the non-phased initial

guesses generation described in section 2.1.

• PhasingProblem: Requires a MissionIndividual as an input and uses a combination

of tree search and local optimisation described in section 2.3 to expand and improve the

search.

As described earlier, the main idea behind this two-step approach is that the

MissionIndividual objects obtained from calling SegmentedProblem.solve() are not

required to provide a continuous end-to-end trajectory but must only solve the problem from the

energetic point of view using simple techniques typically based on the Tisserand graph. Those

MissionIndividual objects will often have large state and time gaps in their

TransferSegments. The main task of the PhasingProblem.branch_and_optimise()

method is to close those gaps by time-shifting the different StateSegment solutions by integer

numbers of planet orbital periods or rotation periods and attempting a local optimisation to improve

and create related solutions from it. The PhasingProblem provides configurability on which

variables shall be matched (state variables and/or time).

ESA GNC-ICATT 2023 – Waldemar Martens et al

8

For simple mission scenarios, like transfers to libration points or Mars transfers, the

SegmentedProblem will already provide a good enough initial guess. In that case, the

MissionIndividual can directly be converted to a multiple-shooting trajectory configuration to

be read by the respective GODOT classes. Alternatively, PhasingProblem.optimise()

provides a convenience method to directly run a local optimisation on a given

MissionIndividual to improve it. The PhasingProblem supports a number of user

configurable constraints, like flyby altitudes. Moreover, any custom user-defined constraint can be

added programmatically from Python to the PhasingProblem instance and considered in

optimisation runs.

All problem classes are most conveniently constructed from a yaml file using the factory method

BaseProblem.from_config().

There are plans to implement a third problem class in the future, the GlobalProblem, which can

be used to find initial guesses for a Mission as a whole from scratch using genetic algorithms and

a black-box transcription of the problem.

3.3 Guess Generators

The initial guesses obtained from SegmentedProblem.solve() make use of a palette of guess

generators that all inherit from the BaseSegmentGuessGenerator class. A guess generator is

responsible for initialising the individual of one TransferSegment and the two neighbouring

StateSegment individuals. If the Mission scenario contains more than one

TransferSegment, the algorithm will move through the sequence of TransferSegment

objects and initialise them as indicated in Figure 8. In each initialisation step the individuals of one

triplet, (StateSegment, TransferSegment, StateSegment) are being initialised using a

particular GuessGenerator class. The StateSegment at the interface between the two

initialisation steps is only required to be fully initialised after both guess generator calls. In this

way, a communication between the different TransferSegment objects is facilitated.

Figure 8: Initialisation algorithm using GuessGenerators in the SegmentedProblem.

ESA GNC-ICATT 2023 – Waldemar Martens et al

9

SALTO comes with a range of guess generators for various mission types. However, users can

easily implement their own guess generators by inheriting from the GuessGenerator class and

implementing the solve method using their custom algorithms. The procedure described above

makes it easy to combine different GuessGenerators within the same Mission scenario.

3.4 Parameters and ParameterBook

A solution to a trajectory optimisation problem is defined by parameter values such as encounter

epochs, Keplerian elements and manoeuvre directions. In SALTO, the ParameterBook class is

used to manage these. It allows configuring free and fixed parameters and defining their allowed

ranges. The ParameterBook is one of the two main constituents of a SegmentIndividual

(the other is the TagBook).

3.5 Tags and TagBook

A central concept in SALTO is the utilisation of category variables or Tags. These are used to

indicate a region in the parameter space where a local minimum is expected. The concept has been

introduced in section 2.2.

Mission designers are often not only interested in a global optimum, but like being offered options

with qualitatively different trajectories in terms of geometry, transfer duration and Δv. In SALTO,

these options are generated by trying to find one MissionIndividual for every combination of

Tag values of the used Segment types. In the example of section 2.2, the Tags are called

departure_direction and arrival_direction and they are examples of NICHE Tags.

The other of the two Tag types in SALTO is the TIMESHIFT type. Whereas the NICHE Tags are

taken into account at the level of the SegmentedProblem (i.e. the SegmentedProblem tries to

find an initial guess for every possible NICHE Tag value), the TIMESHIFT Tags are ignored by

the SegmentedProblem. Instead, TIMESHIFT Tags are used in the PhasingProblem to shift

the epochs of StateSegment individuals by integer planet orbital periods in order to close large

time gaps in TransferSegments. Examples of TIMESHIFT Tags are full_body_revolutions and

full_body_rotations.

The TagBook is a collection of all Tags belonging to a Segment class and allows configuring the

active Tags and their allowed values. It is one of the two main constituents of a

SegmentIndividual (the other is the ParameterBook).

3.6 Collection of Segment types in SALTO

Each StateSegment type in SALTO has a different parameterisation suitable for different

applications. E.g. a state for a direct escape launch is conveniently parameterised using the KepC3

StateSegment because it allows specifying the inclination with respect to the Earth’s equator as

well as the direction of the escape infinite velocity. The Flyby StateSegment is useful for

modelling planetary flybys where the incoming and outgoing infinite velocities are used.

StateSegments are connected by TransferSegments in SALTO. These represent the actual

propagation of the spacecraft. Simple ballistic arcs that optionally contain impulsive manoeuvres

are modelled by the ImpulsiveTransfer segment. Special TransferSegment types exist for

same-planet (resonant, pseudo-resonant, backflip, v-infinity leveraging) transfers and multi-

revolution low-thrust arcs. For a detailed description of the different segment types, please refer to

the online documentation [10].

ESA GNC-ICATT 2023 – Waldemar Martens et al

10

3.7 Collection of initial guess generators in SALTO

The currently implemented guess generator types include algorithms based on the Lambert

problem, the Tisserand graph, resonant, pseudo-resonant, backflip, v-infinity leveraging transfer

searches, bisection for libration point transfers and multi-revolution low-thrust transfers based on a

collocation method. More algorithms are continuously added. Again, a more detailed description of

all the algorithms can be found in the online documentation [10].

4 USE CASES AND USER EXTENSIBILITY

4.1 Supported Mission Types

At the current state of development, SALTO supports the following mission types:

• Interplanetary missions with high-thrust initial guesses: these includes multi-gravity assist

trajectories with chemical propulsion like the ones used by JUICE, SOLO and Rosetta and

low-thrust interplanetary missions, like BepiColombo.

• Libration point missions: one-leg transfers from Earth to any of the libration points, like the

Sun-Earth L2 point used by Euclid and Ariel, followed up by a station-keeping leg to

maintain the Lissajous orbits.

• Multi-revolution low-thrust transfers: the method described in [11] based on collocation and

averaging out the fast variable has been implemented. It is applicable to any low-thrust

transfer scenario, where the mean orbital elements change slowly over many spacecraft

revolutions.

Developments for lunar (low-energy) transfers, few-revolution low-thrust transfers based on

collocation and support of non-Keplerian insertion orbits (e.g. NRHOs) are ongoing.

4.2 User Extensions

As indicated in section 3, care has been taken to design the software in a modular, user-extensible

way, such that specific future mission needs can be implemented without changing the SALTO

source code. The main places where user extensions are possible are:

1. Segment types: segments are the mission building blocks in SALTO. The most common

types are provided, but specific mission needs might require custom Segment types. As an

example, the transfer design for the LISA mission requires a specific three-spacecraft state

representation for the so-called cartwheel formation, which has been implemented as the

Cartwheel StateSegment and used for the LISA transfer design [12].

2. Initial guess generators: even though the most relevant guess generators for the

SegmentedProblem are provided in SALTO, a vast variety of algorithms exist in the

literature. To meet specific user needs, it is easy to implement a guess generator for a given

triplet of (StateSegment, TransferSegment, StateSegment). Such user-

implemented guess generators can then be mixed and matched with other guess generators.

ESA GNC-ICATT 2023 – Waldemar Martens et al

11

4.3 Integration of SALTO in the End-to-end Mission Analysis Workflow

At ESOC, an end-to-end mission analysis workflow is considered to follow the following steps:

1. Early mission design: generation of initial guess trajectories.

2. Trajectory optimisation: refinement of trajectories in the full dynamical model by adding all

operational and scientific constraints.

3. Navigation analysis: simulation of the orbit determination and guidance process.

4. (Planetary protection analysis)

5. Product generation: OEM files, AOS/LOS data, geometry plots…

6. Flight dynamics operations

The common low-level software infrastructure of all these steps is GODOT [6]. SALTO is the

software to tackle step 1 of the workflow. Being based on GODOT, it allows a seamless integration

with all the following steps. The main mechanism by which this integration is achieved is the use of

the GODOT Trajectory class as the backend for all orbit propagations. The Trajectory class

is based on a highly configurable multiple-shooting setup that supports a wide range of state

representations, manoeuvre models, matching points and dynamical models. It internally employs

GODOT’s automatic differentiation module, autodif, and is mainly used as the propagation

engine for trajectory optimisation in GODOT. For more information, please refer to the GODOT

online documentation [7].

All solutions generated by SALTO can directly be saved as a Trajectory configuration yaml

file that is used for construction of that class. Therefore, no tedious manual work is required to

convert initial guesses to a format suitable for high-fidelity local optimisation. The same

Trajectory can also be used for the rest of the above workflow, in particular, as an input to the

navigation analysis (step 3).

Both GODOT and SALTO use pygmo [13] as an interface to local optimisation algorithms.

Therefore, any algorithm that is supported by pygmo can also be used for the local optimisation

tasks in SALTO. This includes NLOPT, SNOPT, WORHP, IPOPT and Scipy algorithms. However,

it was found that SALTO works in a particularly robust way with Pyoptgra [14]. This is an Open

Source Python-wrapped version of the in-house local optimiser, OPTGRA. It was specifically

developed at ESOC for close-to-linear optimisation problems with many constraints and is thus

tailored for multiple-shooting trajectory optimisation problems. The distinguishing feature of

OPTGRA is the focus on efficient constraint satisfaction. The minimisation of the cost function is

only attempted once all constraints are satisfied. This is different in most other gradient-based

optimisers but is exactly what is required to solve the phasing problem in SALTO.

5 CONCLUSIONS AND FUTURE WORK

The novel mission design framework, SALTO, has been introduced and its main working

principles, as well as the software design were described. SALTO is a very flexible toolset that was

initially conceived for the design of multi-gravity assist trajectories, but can be applied to other

mission types, like lunar and libration point missions as well. The SALTO algorithm is distinctly

different from other popular initial guess generation tools because it is fully based on a physical

understanding and intuition of the trajectory design problem, which was developed at ESOC over

the last decades. Its seamless integration into the end-to-end mission analysis workflow via

GODOT will significantly increase the efficiency of trajectory design and analysis in ESA. SALTO

is also freely available to the European industry and academia as part of the MIDAS package under

ESA GNC-ICATT 2023 – Waldemar Martens et al

12

the ESA Community License (Community Open Source). It is accessible through the space-

codev.org platform.

For brevity reasons, the current paper can only give a high-level overview of such a complex

software tool. The interested reader is advised to explore the online documentation, which is

constantly expanded [10].

SALTO is being continuously developed and improved. Ongoing and planned developments

include the following:

• A fast, low-fidelity trajectory backend: as described in section 4.3, all trajectory propagation

is currently being done via the GODOT Trajectory class, which uses numerical

integration. For an initial guess generation tool such a high fidelity is not needed and

unnecessarily slows down the process. A low-fidelity version of the Trajectory class

using Keplerian propagation and other fast methods, such as Sims-Flanagan low-thrust arcs

[15], is currently being developed. The user will be able to configure the used Trajectory

backend in the PhasingProblem depending on their fidelity and speed needs.

• Few-revolution low-thrust transfers: the current support of low-thrust trajectories in SALTO

is limited to many-revolution transfers, where the change of orbital elements over one

revolution is small enough to be averaged over, and low-thrust from impulsive initial

guesses. It is envisioned to add a GuessGenerator that can create low-thrust initial

guesses based on a collocation method for few revolution transfer. This addition will be

useful for interplanetary low-thrust missions.

• Lunar transfers: support of lunar Hohmann transfers between Earth and Moon will be rather

straightforward to implement with the existing code base. Additionally, low-energy transfers

that use lunar resonances [16] or go via the Weak Stability Boundary [17] shall also be

supported.

• Non-Keplerian target orbits: currently only Keplerian insertion orbits are supported via the

implemented StateSegment types. For some mission types, such as lunar missions

involving an NRHO, this is not sufficient. A support of non-Keplerian target orbits shall the

added to SALTO to cover such missions.

• Linking of mission phases: the software structure is very suitable for designing different

parts of a mission (e.g. interplanetary transfer and moon tour) separately and then linking

them together by closing potential state and time gaps between the phases.

6 ANNEX: TISSERAND GRAPHS

To make this paper as self-contained as possible, this annex explains the basics of the Tisserand

graph, which is extensively used in SALTO: when designing multi-flyby trajectories, it can be

useful to start with a model where all planet orbits are circular and planar and the spacecraft

trajectory is also confined to the plane. Then, all spacecraft orbits crossing a planet at a given

infinite velocity can conveniently be represented as a contour line in a graph with the aphelion and

perihelion radii on its axes (see Figure 9). Since a planetary flyby does not change the infinite

velocity magnitude, orbits connected by a flyby will all be located on the same contour line. This is

very handy because it shows at a single glance what aphelion and perihelion radii can be reached

using flybys.

https://www.space-codev.org/
https://www.space-codev.org/

ESA GNC-ICATT 2023 – Waldemar Martens et al

13

Figure 9: The family of orbits crossing the Earth with an infinite velocity of 8 km/s (left) and the corresponding

contour line in the Tisserand graph (right). The black dots indicate the orbits shown on the left.

This aphelion-perihelion representation is called a Tisserand graph. Its full potential for trajectory

design becomes apparent, when contour lines of all planets are superimposed in the same plot and

the maximum allowed travel distances (due to the minimum flyby altitude constraint) along the

contour lines are also indicated (see Figure 10). A point in the plot represents a spacecraft orbit. It is

immediately apparent which planet orbits are crossed by a given orbit and at what infinite velocity

the encounter occurs. A displacement along a contour line represents a flyby.

Figure 10: Tisserand graph for Venus, Earth, Mars and Jupiter. The contour lines are spaced by 2 km/s in

infinite velocity. The dots on the contour lines indicate the maximum distance by which a 300 km altitude flyby

can change the orbit.

A path along the different contour lines represents an interplanetary trajectory with flybys, such as

the one shown in Figure 1. The graph is very helpful for finding suitable planet sequences for

interplanetary missions. For instance, the JUICE transfer aims at starting at Earth with an infinite

velocity around 3 km/s and arriving at Jupiter minimising the infinite velocity. This fixes the start

and end point of the trajectory in the graph. By manually testing different ways of connecting these

ESA GNC-ICATT 2023 – Waldemar Martens et al

14

two points, it quickly becomes apparent that certain planet sequences, like the famous Earth-Venus-

Earth-Earth-Jupiter sequence is expected to work particularly well.

Tisserand graphs are tools to solve the transfer problem from the energetic perspective, i.e. they

neglect the phasing between the planets and the spacecraft, but their simplicity has made them a

popular means for preliminary trajectory design.

Tisserand graphs can be extended for the use with low-energy transfers, i.e. weak stability boundary

transfers, lunar resonances and weak capture (see [18] for details). They can therefore support initial

guess generation for a wide class of mission types in a tool like SALTO, where large state and time

gaps are allowed at the initial stage.

7 REFERENCES

[1] Vikhar P. A., Evolutionary Algorithms: A Critical Review and its Future Prospects, 2016

International Conference on Global Trends in Signal Processing, Information Computing and

Communication (ICGTSPICC), Jalgaon, India, 2016, pp. 261-265

[2] Becerra V. M., Myatt D. R., Nasuto S. J., Bishop J. M., Izzo, D., An Efficient Pruning

Technique for the Global Optimisation of Multiple Gravity Assist Trajectories, Proceedings of the

GO 2005 Conference, Almeria, Spain, 2005

[3] Izzo D., Advances in Global optimisation For Space Trajectory Design, Paper ISTS 2006-d-45,

25th International Symposium on Space Technology and Science, Japan, 2006

[4] Vasile M., Ceriotti M., Radice G., Becerra V. M., Nasuto S., Anderson J., Global Trajectory

Optimisation: Can We Prune the Solution Space when Considering Deep Space Manoeuvres?,

European Space Agency, the Advanced Concepts Team, Ariadna Final Report (06-4101c), 2007

[5] Boutonnet A., Martens W. and Schoenmaekers J., SOURCE: A Matlab-oriented Tool for

Interplanetary Trajectory Global Optimization, Fundamentals (Part I), Paper AAS 13-300,

AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Kauai, Hawaii, Feb 2013

[6] Mackenzie R. and Varga G. 2023 GODOT, ESA astrodynamics infrastructure software for

operations and mission analysis, Proceedings of the 9th International Conference on Astrodynamics

Tools and Techniques, 214

[7] GODOT software documentation https://godot.io.esa.int/docs

[8] Boutonnet A, Langevin Y. and Rocchi A., JUICE Interplanetary Phase: Trajectory Design and

Navigation, Paper AAS 23-204, AAS/AIAA Space Flight Mechanics Meeting, Austin, Texas, Jan

2023

[9] Strange N. J., and Longuski J. M., A Graphical Method for Gravity-Assist Trajectory Design,

Journal of Spacecraft and Rockets 39.1 (2002), 9-16

[10] MIDAS software documentation, https://midas.io.esa.int/midas/

[11] Olikara, Z. P., Framework for Optimizing Many-Revolution Low-Thrust Transfers, Paper AAS

18–332. 2018, AAS/AlAA Astrodynamics Specialist Conference

https://godot.io.esa.int/docs
https://midas.io.esa.int/midas/

ESA GNC-ICATT 2023 – Waldemar Martens et al

15

[12] Martens, W, Joffre, E., Trajectory Design for the ESA LISA Mission, The Journal of the

Astronautical Sciences 68.2 (2021): 402-443.

[13] Biscani F., Izzo, D., A Parallel Global Multiobjective Framework for Optimization: pagmo.

Journal of Open Source Software, 5(53), 2338, 2020

[14] Pyoptgra github repository: https://github.com/esa/pyoptgra

[15] Sims, J. A., Flanagan S. A., Preliminary Design of Low-Thrust Interplanetary Missions

AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, Aug. 1999.

[16] Schoenmaekers, J., Horas, D., Pulido, J. (2001). SMART-1: With Solar Electric Propulsion to

the Moon, in Proceeding of the 16th International Symposium on Space Flight Dynamics, Pasadena,

CA, 3–7.

[17] Belbruno, E. (1987), Lunar Capture Orbits, a Method of Constructing Earth Moon

Trajectories and the Lunar GAS Mission, in 19th International Electric Propulsion Conference,

1054

[18] Martens, W. Bucci, L., Double Tisserand Graphs for Low-Energy Lunar Transfer Design,

Frontiers in Space Technologies, 30 September 2022, 3

https://github.com/esa/pyoptgra

