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ABSTRACT 

 

A novel trajectory design algorithm suitable for interplanetary, lunar and libration 

point missions with high and low thrust is described. Unlike techniques that aim at 

generating initial guesses in a problem-agnostic way, the method proposed here is 

fully tailored to the trajectory design problem and exploits expert insight in orbital 

motion. 

The Python implementation of this algorithm, called SALTO (Search Algorithm using 

Linked Trajectory Optimisation), is based on two main ideas.  

Firstly, the initial guess is only required to solve the problem from an energetic 

perspective and does not need to solve the phasing problem yet. This allows for large 

state and time gaps along the trajectory, which are systematically closed in a second 

step that exploits time shifts by full orbital periods and/or body rotations.  

Secondly, the algorithm is not expected to autonomously find all local minima in the 

cost function. Instead, the user defines "tags," or category variables, that guide 

SALTO's search for solutions by indicating the expected structure of the search space.  

SALTO is developed at ESOC as part of the MIDAS package and is Community Open 

Source (ESA Community License). 

1 INTRODUCTION 

Trajectory design for interplanetary missions is a challenging problem for which a wide range of 

algorithms have been proposed and used in the past. These algorithms range from completely 

problem-agnostic solvers, such as evolutionary algorithms [1], to methods that incorporate some 

degree of domain knowledge, like branch and pruning [2][3][4][5]. In this paper, a novel algorithm 

is presented that is at the other end of this spectrum in the sense that it is expert-informed and fully 

tailored to the trajectory design problem. This algorithm was first developed at ESOC in an in-

house prototype, called SWING. It was designed for interplanetary missions with high and low-

thrust and was successfully applied for reproducing the trajectories of JUICE, SOLO, BepiColombo 

and Rosetta. Later, it was realised that the method used in SWING is generalisable to a wider class 

of missions, including lunar low-energy transfers, libration point missions and any combination of 

these. 
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This triggered the development of SALTO (Search Algorithm using Linked Trajectory 

Optimisation) as a generic, user-extensible tool. SALTO is a module in the mission analysis Python 

package, MIDAS, and is based on the ESOC flight dynamics infrastructure, GODOT [6][7]. It 

supports the direct generation of multiple-shooting trajectories in the GODOT format from initial 

guesses. These can be used in local optimisation and navigation analysis and therefore seamlessly 

integrates into the end-to-end mission analysis workflow at ESOC. SALTO is freely available to the 

European industry and academia as part of the MIDAS package under the ESA Community License 

(Community Open Source). It is accessible through the space-codev.org platform. 

 

The general concepts and ideas behind the SALTO algorithm will be introduced in section 2 using 

the JUICE mission as an example. A more detailed look into the software implementation is then 

provided in section 3. Potential use cases and ways for users to extend SALTO are discussed in 

section 4, followed by conclusions and future work in section 5. 

2 GENERAL CONCEPTS 

The general working principles in SALTO are explained in the following using the JUICE 

interplanetary transfer [8] as an example. 

2.1 Non-phased Initial Guesses 

To understand the SALTO algorithm, one can start by observing that optimal transfers for a given 

planet sequence look close to identical in the Tisserand1 graph [9]. As an illustration for the launch-

Earth-Venus-Earth-Earth-Jupiter (launch-e1-v1-e2-e3-joi) flyby sequence, the JUICE baseline 

transfer is depicted in Figure 1.  

 

 
Figure 1: The JUICE baseline interplanetary transfer trajectory (left) and the corresponding path in the 

Tisserand graph (right). The infinite velocity contours in the Tisserand graph are separated by 2 km/s. The 

marker spacing on the contours correspond to flybys of 300 km altitude. The planet sequence is: launch, Earth 

(→), Venus (→), Earth (→), Earth (→), Jupiter. 

 

 
1 The Tisserand graph depicts contour lines of constant infinite velocity relative to the different planets and assumes a 

planar, circular orbit model for the planets. It is a useful and widespread tool for the design of multi-gravity-assist 

trajectories. To make this paper as self-contained as possible, a primer on Tisserand graphs is included in the Annex 

(section 6).  

https://www.space-codev.org/
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Even though the depicted transfer corresponds to specific flyby dates, any other transfer solution 

with the same planet sequence will look almost indistinguishable in the Tisserand graph. This is 

because the Tisserand graph shows the solution only from the energetic point of view and doesn’t 

hold any information about the planet phasing and flyby dates. Therefore, it is very easy to 

analytically construct transfers in the Tisserand graph when the planet sequence is given. 

 

But how useful are such initial guesses for the construction of “phased” solutions? Note that the 

path in the Tisserand graph fixes the semi-major axes and eccentricities of all intermediate orbits 

during the transfer. To fully define the trajectory in a planar non-phased orbit model, the only 

additional parameter that needs to be adjusted for the intermediate orbits is the argument of 

perihelion. This can easily be done by solving a sequence of one-dimensional root-finding problems 

for the intermediate orbits starting from the Earth-Jupiter arc and proceeding backwards towards 

launch. This is a numerically fast and robust procedure, and the resulting trajectory is continuous in 

space, i.e., it is almost indistinguishable from that in Figure 1 (left). However, it still assumes that 

the planets are at the right position when the spacecraft arrives to do the flyby. A way of looking at 

such a solution is to say that it is continuous in space, but not in time. That can be seen by plotting 

the Sun distance evolution as shown in Figure 2.  

 

 
Figure 2: Sun distance evolution of two Tisserand initial guesses. These have zero (left) and one (right) full 

spacecraft revolutions in the e1 to v1 arc. 

 

Here, we have fixed the Jupiter arrival date to result in a Hohmann transfer from Earth to Jupiter 

and adjusted the other flyby dates to match the closest epoch where the planet is at the correct 

position for the flyby. Moreover, in this step we have also moved from a planar, circular planet 

model to the full ephemeris model, which is apparent from the varying Sun distance evolution of 

the planets. Also, the plot already uses a numerical integration of the multiple-shooting trajectory in 

a dynamical model where both the flyby body and the Sun gravities are considered. Note that the 

choice of epochs done in this step is not unique! More precisely, any flyby epoch can be moved 

forward or backward in time by integer numbers of planet orbital periods. Any candidate solution 

resulting from such an operation will look identical in the trajectory plot (Figure 1), but will exhibit 

different time gaps in the radius plot (Figure 2). This property can be used to our advantage to 

construct feasible, time-continuous solutions, as will be described in the following. 

 

The difference between the two plots in Figure 2 is the number of full spacecraft revolutions (these 

are examples of “niche tags” in SALTO jargon) in the e1 to v1 arc: zero revolutions in the left plot 

and one full revolution in the right plot. The initial guess fixes the true longitude of the flybys, but 

not the epochs: there is a remaining ambiguity modulo full body orbital periods. Any shift of a 

flyby epoch by a full body orbital period leads to another valid initial guess with different time 

gaps. A shift of the launch date and e1 date by one full Earth orbital period on the left figure would 
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result in a decrease of the time gap in the e1 to v1 arc and thus a better initial guess. The initial 

guess in the right plot already has very small time gaps. The procedure of how to fully close these 

time gaps will be described in section 2.3. 

2.2 Niche Tags and Diversity of Solutions 

Before delving into how to solve the phasing problem, it shall be noted that non-phased initial 

guesses are created for every expected niche (local optimum) in the solution space. This is to 

generate a diverse pool of solutions, rather than just one global optimum. The knowledge of where 

to find these niches is drawn purely from experience and does not rely on any automatic algorithms. 

E.g., in the context of multi-flyby trajectories, every arc can have an inward or outward departure 

and arrival asymptote at the planets, as shown in Figure 3. Each combination of departure and 

arrival directions at all the planets will lead to a qualitatively different transfer, both in terms of 

geometry and timing, thus a different local optimum - or niche. 

The departure direction and arrival direction are examples of “niche tags” in SALTO. Another 

example is the number of full spacecraft revolutions during a transfer arc. Niche tags are used to 

explicitly enumerate the different niches in the solution space where a solution is looked for.  

 

 
Figure 3: Departure and arrival direction tags for the Earth-to-Jupiter transfer. 

 

2.3 Solving the Phasing Problem 

In section 2.1 it was noted that in the candidate solutions constructed so far, any flyby epoch can be 

moved forward or backward in time by integer numbers of planet orbital periods. This operation 

does not affect the continuity of the trajectory in space, but only alters the time gaps between the 

flybys. To construct a fully continuous trajectory, an algorithm consisting of flyby epoch time shifts 

and local optimisation runs is applied to the candidate solution. It starts at the Jupiter arrival epoch 

and moves backwards through the trajectory towards launch. The algorithm can be summarised as 

follows: 

 

1. For the current planet, select the number of orbital periods to move the flyby epoch by. This 

can be any integer (positive or negative) number. The number is called a “time shift tag”. 

2. If the resulting time gap in the previous transfer arc is lower than a user-given threshold, run 

a local optimisation with a matching constraint to close the time gap. If the optimisation fails 

to converge, discard the previously selected time shift tag combination. 

3. If the optimisation is successful, move on to the next planet in the sequence and proceed 

with step 1. 
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At the end of this procedure, we end up with a continuous (in both space and time) trajectory for 

every feasible niche tag combination. Figure 4 shows the Sun distance evolution of such a solution. 

It corresponds to the flown JUICE trajectory (with the exception that it uses a standard Earth flyby 

at e1 whereas JUICE uses a combined Lunar-Earth gravity assist) and results from the initial guess 

from Figure 2 (right). The initial guess from Figure 2 (left) was discarded by the algorithm, because 

the time gap in the e1 to v1 arc could not be closed. 

Note that a comprehensive search for trajectories in SALTO encompasses a consideration of all 

possible niche tag combinations. In the JUICE example, there are 10 departure/arrival direction tags 

where each can take two values (“inward” or “outward”). Even neglecting the niche tags coming 

from the resonance ratios and full spacecraft revolutions, that would result in 210=1024 niche tag 

combinations! An efficient implementation of the described algorithm therefore needs to discard 

unfeasible tag combinations as early as possible in the process to remain practically useful. 

 

 
Figure 4: Sun distance evolution of the fully converged JUICE baseline trajectory. All time gaps have been 

closed by the algorithm described in the main text. The yellow box indicates all niche tag values that resulted in 

this trajectory. These include the departure/arrival directions at the flybys, the full spacecraft revolutions in the 

transfer arcs and the (pseudo-)resonance ratios of the Earth-to-Earth arcs. 

 

Note that due to the nature of this algorithm, it is not limited to a particular dynamical model or a 

patched conics approximation. In fact, it is very suitable for a gradual increase of fidelity, starting 

with simple and fast models and moving on towards fully realistic models. Moreover, the concepts 

exploited in SALTO are not limited to multi-flyby trajectories, but can be extended to any scenario 

where: 

 

1. There exists a simple and fast method for initial guess generation for one trajectory arc (e.g. 

the Tisserand graph). This initial guess does not need to solve the phasing problem yet. 

2. There is a periodicity in the system due to planet revolutions around the central body or 

planet rotations around its axis. 
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Such problems include lunar (low-energy) missions, libration point missions, moon tours and any 

combination of the different types. The SALTO software package is set up in such a way as to be 

agnostic about the underlying transfer problem, which allows for a high level of flexibility and 

future extensibility. 

3 SOFTWARE PACKAGE DESCRIPTION 

This section describes the structure of the SALTO software module inside MIDAS 

(midas.salto) and explains the relation between the different classes to the algorithm presented 

in the previous section. More details on the software and tutorials can be found in the MIDAS 

documentation [10].  

The objective is to make SALTO a top-level framework that allows the user to easily concatenate 

mission phases that have been designed with low-level algorithms from the midas.design 

module and to convert them to a multiple-shooting trajectory configuration for further processing. 

As such, SALTO is based on an abstraction of the algorithms described in the previous section. 

3.1 Segments, Missions and Individuals 

In SALTO, (candidate) solutions for a mission part are represented by SegmentIndividual 

objects, which are concatenated to a MissionIndividual to make up an end-to-end trajectory 

solution (see Figure 5). Each SegmentIndividual contains a ParameterBook and TagBook, 

which, when initialised, fully define the solution.  

 

 
Figure 5: SegmentIndividuals concatenated to a MissionIndividual in SALTO. 

 

The underlying “scenario” or template for a SegmentIndividual is defined by different 

Segment types. These can be configured and used to represent various mission parts, like launches, 

flybys, ballistic arcs or (pseudo-)resonant arcs. Segment objects can be of two types: 

StateSegment and TransferSegment. The general rule is that a Mission must contain an 

alternating sequence of StateSegment and TransferSegment objects with a StateSegment 

in the beginning and the end (see Figure 6). StateSegments represent a spacecraft state in any 

parameterisation (Keplerian, Cartesian, Equinoctial…) and an epoch. TransferSegments 

connect these StateSegments with ballistic arcs and/or manoeuvres (both high and low thrust).  

 

 
Figure 6: Segments concatenated to a Mission in SALTO. 

 

A Mission can also be constructed programmatically, but in most cases, it is more convenient to 

do that from a yaml configuration file using the factory method Mission.from_config(). An 

example of such a configuration file is shown in  

Figure 7. 
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Figure 7: The Mission configuration file (from launch up to the Venus flyby, v1) in SALTO for the JUICE 

problem discussed in section 2. Each Segment configuration mainly defines the ranges and allowed values for 

parameters and tags in the respective ParameterBook and TagBook. 

 

It is important to realise that the actual (candidate) solution is represented by a 

MissionIndividual in SALTO, not by a Mission. The latter functions only as a template or 

blueprint that defines the mission scenario. 

3.2 Segmented Problem and Phasing Problem 

SALTO provides two main classes to find solutions to global trajectory optimisation problems. 

These are: 

 

• SegmentedProblem: Finds MissionIndividual solutions from scratch using 

BaseSegmentGuessGenerator child classes. This corresponds to the non-phased initial 

guesses generation described in section 2.1. 

• PhasingProblem: Requires a MissionIndividual as an input and uses a combination 

of tree search and local optimisation described in section 2.3 to expand and improve the 

search. 

 

As described earlier, the main idea behind this two-step approach is that the 

MissionIndividual objects obtained from calling SegmentedProblem.solve() are not 

required to provide a continuous end-to-end trajectory but must only solve the problem from the 

energetic point of view using simple techniques typically based on the Tisserand graph. Those 

MissionIndividual objects will often have large state and time gaps in their 

TransferSegments. The main task of the PhasingProblem.branch_and_optimise() 

method is to close those gaps by time-shifting the different StateSegment solutions by integer 

numbers of planet orbital periods or rotation periods and attempting a local optimisation to improve 

and create related solutions from it. The PhasingProblem provides configurability on which 

variables shall be matched (state variables and/or time). 
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For simple mission scenarios, like transfers to libration points or Mars transfers, the 

SegmentedProblem will already provide a good enough initial guess. In that case, the 

MissionIndividual can directly be converted to a multiple-shooting trajectory configuration to 

be read by the respective GODOT classes. Alternatively, PhasingProblem.optimise() 

provides a convenience method to directly run a local optimisation on a given 

MissionIndividual to improve it. The PhasingProblem supports a number of user 

configurable constraints, like flyby altitudes. Moreover, any custom user-defined constraint can be 

added programmatically from Python to the PhasingProblem instance and considered in 

optimisation runs. 

 

All problem classes are most conveniently constructed from a yaml file using the factory method 

BaseProblem.from_config(). 

 

There are plans to implement a third problem class in the future, the GlobalProblem, which can 

be used to find initial guesses for a Mission as a whole from scratch using genetic algorithms and 

a black-box transcription of the problem. 

3.3 Guess Generators 

The initial guesses obtained from SegmentedProblem.solve() make use of a palette of guess 

generators that all inherit from the BaseSegmentGuessGenerator class. A guess generator is 

responsible for initialising the individual of one TransferSegment and the two neighbouring 

StateSegment individuals. If the Mission scenario contains more than one 

TransferSegment, the algorithm will move through the sequence of TransferSegment 

objects and initialise them as indicated in Figure 8. In each initialisation step the individuals of one 

triplet, (StateSegment, TransferSegment, StateSegment) are being initialised using a 

particular GuessGenerator class. The StateSegment at the interface between the two 

initialisation steps is only required to be fully initialised after both guess generator calls. In this 

way, a communication between the different TransferSegment objects is facilitated. 

 

 
Figure 8: Initialisation algorithm using GuessGenerators in the SegmentedProblem. 
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SALTO comes with a range of guess generators for various mission types. However, users can 

easily implement their own guess generators by inheriting from the GuessGenerator class and 

implementing the solve method using their custom algorithms. The procedure described above 

makes it easy to combine different GuessGenerators within the same Mission scenario. 

3.4 Parameters and ParameterBook 

A solution to a trajectory optimisation problem is defined by parameter values such as encounter 

epochs, Keplerian elements and manoeuvre directions. In SALTO, the ParameterBook class is 

used to manage these. It allows configuring free and fixed parameters and defining their allowed 

ranges. The ParameterBook is one of the two main constituents of a SegmentIndividual 

(the other is the TagBook). 

 

3.5 Tags and TagBook 

A central concept in SALTO is the utilisation of category variables or Tags. These are used to 

indicate a region in the parameter space where a local minimum is expected. The concept has been 

introduced in section 2.2. 

Mission designers are often not only interested in a global optimum, but like being offered options 

with qualitatively different trajectories in terms of geometry, transfer duration and Δv. In SALTO, 

these options are generated by trying to find one MissionIndividual for every combination of 

Tag values of the used Segment types. In the example of section 2.2, the Tags are called 

departure_direction and arrival_direction and they are examples of NICHE Tags. 

 

The other of the two Tag types in SALTO is the TIMESHIFT type. Whereas the NICHE Tags are 

taken into account at the level of the SegmentedProblem (i.e. the SegmentedProblem tries to 

find an initial guess for every possible NICHE Tag value), the TIMESHIFT Tags are ignored by 

the SegmentedProblem. Instead, TIMESHIFT Tags are used in the PhasingProblem to shift 

the epochs of StateSegment individuals by integer planet orbital periods in order to close large 

time gaps in TransferSegments. Examples of TIMESHIFT Tags are full_body_revolutions and 

full_body_rotations. 

 

The TagBook is a collection of all Tags belonging to a Segment class and allows configuring the 

active Tags and their allowed values. It is one of the two main constituents of a 

SegmentIndividual (the other is the ParameterBook). 

 

3.6 Collection of Segment types in SALTO 

Each StateSegment type in SALTO has a different parameterisation suitable for different 

applications. E.g. a state for a direct escape launch is conveniently parameterised using the KepC3 

StateSegment because it allows specifying the inclination with respect to the Earth’s equator as 

well as the direction of the escape infinite velocity. The Flyby StateSegment is useful for 

modelling planetary flybys where the incoming and outgoing infinite velocities are used.  
 

StateSegments are connected by TransferSegments in SALTO. These represent the actual 

propagation of the spacecraft. Simple ballistic arcs that optionally contain impulsive manoeuvres 

are modelled by the ImpulsiveTransfer segment. Special TransferSegment types exist for 

same-planet (resonant, pseudo-resonant, backflip, v-infinity leveraging) transfers and multi-

revolution low-thrust arcs. For a detailed description of the different segment types, please refer to 

the online documentation [10]. 
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3.7 Collection of initial guess generators in SALTO 

The currently implemented guess generator types include algorithms based on the Lambert 

problem, the Tisserand graph, resonant, pseudo-resonant, backflip, v-infinity leveraging transfer 

searches, bisection for libration point transfers and multi-revolution low-thrust transfers based on a 

collocation method. More algorithms are continuously added. Again, a more detailed description of 

all the algorithms can be found in the online documentation [10]. 

4 USE CASES AND USER EXTENSIBILITY 

4.1 Supported Mission Types 

At the current state of development, SALTO supports the following mission types: 

 

• Interplanetary missions with high-thrust initial guesses: these includes multi-gravity assist 

trajectories with chemical propulsion like the ones used by JUICE, SOLO and Rosetta and 

low-thrust interplanetary missions, like BepiColombo. 

• Libration point missions: one-leg transfers from Earth to any of the libration points, like the 

Sun-Earth L2 point used by Euclid and Ariel, followed up by a station-keeping leg to 

maintain the Lissajous orbits. 

• Multi-revolution low-thrust transfers: the method described in [11] based on collocation and 

averaging out the fast variable has been implemented. It is applicable to any low-thrust 

transfer scenario, where the mean orbital elements change slowly over many spacecraft 

revolutions. 

 

Developments for lunar (low-energy) transfers, few-revolution low-thrust transfers based on 

collocation and support of non-Keplerian insertion orbits (e.g. NRHOs) are ongoing.  

4.2 User Extensions 

As indicated in section 3, care has been taken to design the software in a modular, user-extensible 

way, such that specific future mission needs can be implemented without changing the SALTO 

source code. The main places where user extensions are possible are: 

 

1. Segment types: segments are the mission building blocks in SALTO. The most common 

types are provided, but specific mission needs might require custom Segment types. As an 

example, the transfer design for the LISA mission requires a specific three-spacecraft state 

representation for the so-called cartwheel formation, which has been implemented as the 

Cartwheel StateSegment and used for the LISA transfer design [12]. 

2. Initial guess generators: even though the most relevant guess generators for the 

SegmentedProblem are provided in SALTO, a vast variety of algorithms exist in the 

literature. To meet specific user needs, it is easy to implement a guess generator for a given 

triplet of (StateSegment, TransferSegment, StateSegment). Such user-

implemented guess generators can then be mixed and matched with other guess generators. 
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4.3 Integration of SALTO in the End-to-end Mission Analysis Workflow 

At ESOC, an end-to-end mission analysis workflow is considered to follow the following steps: 

 

1. Early mission design: generation of initial guess trajectories. 

2. Trajectory optimisation: refinement of trajectories in the full dynamical model by adding all 

operational and scientific constraints. 

3. Navigation analysis: simulation of the orbit determination and guidance process. 

4. (Planetary protection analysis) 

5. Product generation: OEM files, AOS/LOS data, geometry plots… 

6. Flight dynamics operations 

 

The common low-level software infrastructure of all these steps is GODOT [6]. SALTO is the 

software to tackle step 1 of the workflow. Being based on GODOT, it allows a seamless integration 

with all the following steps. The main mechanism by which this integration is achieved is the use of 

the GODOT Trajectory class as the backend for all orbit propagations. The Trajectory class 

is based on a highly configurable multiple-shooting setup that supports a wide range of state 

representations, manoeuvre models, matching points and dynamical models. It internally employs 

GODOT’s automatic differentiation module, autodif, and is mainly used as the propagation 

engine for trajectory optimisation in GODOT. For more information, please refer to the GODOT 

online documentation [7]. 

 

All solutions generated by SALTO can directly be saved as a Trajectory configuration yaml 

file that is used for construction of that class. Therefore, no tedious manual work is required to 

convert initial guesses to a format suitable for high-fidelity local optimisation. The same 

Trajectory can also be used for the rest of the above workflow, in particular, as an input to the 

navigation analysis (step 3). 

 

Both GODOT and SALTO use pygmo [13] as an interface to local optimisation algorithms. 

Therefore, any algorithm that is supported by pygmo can also be used for the local optimisation 

tasks in SALTO. This includes NLOPT, SNOPT, WORHP, IPOPT and Scipy algorithms. However, 

it was found that SALTO works in a particularly robust way with Pyoptgra [14]. This is an Open 

Source Python-wrapped version of the in-house local optimiser, OPTGRA. It was specifically 

developed at ESOC for close-to-linear optimisation problems with many constraints and is thus 

tailored for multiple-shooting trajectory optimisation problems. The distinguishing feature of 

OPTGRA is the focus on efficient constraint satisfaction. The minimisation of the cost function is 

only attempted once all constraints are satisfied. This is different in most other gradient-based 

optimisers but is exactly what is required to solve the phasing problem in SALTO. 

5 CONCLUSIONS AND FUTURE WORK 

The novel mission design framework, SALTO, has been introduced and its main working 

principles, as well as the software design were described. SALTO is a very flexible toolset that was 

initially conceived for the design of multi-gravity assist trajectories, but can be applied to other 

mission types, like lunar and libration point missions as well. The SALTO algorithm is distinctly 

different from other popular initial guess generation tools because it is fully based on a physical 

understanding and intuition of the trajectory design problem, which was developed at ESOC over 

the last decades. Its seamless integration into the end-to-end mission analysis workflow via 

GODOT will significantly increase the efficiency of trajectory design and analysis in ESA. SALTO 

is also freely available to the European industry and academia as part of the MIDAS package under 
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the ESA Community License (Community Open Source). It is accessible through the space-

codev.org platform.  

For brevity reasons, the current paper can only give a high-level overview of such a complex 

software tool. The interested reader is advised to explore the online documentation, which is 

constantly expanded [10]. 

SALTO is being continuously developed and improved. Ongoing and planned developments 

include the following: 

 

• A fast, low-fidelity trajectory backend: as described in section 4.3, all trajectory propagation 

is currently being done via the GODOT Trajectory class, which uses numerical 

integration. For an initial guess generation tool such a high fidelity is not needed and 

unnecessarily slows down the process. A low-fidelity version of the Trajectory class 

using Keplerian propagation and other fast methods, such as Sims-Flanagan low-thrust arcs 

[15], is currently being developed. The user will be able to configure the used Trajectory 

backend in the PhasingProblem depending on their fidelity and speed needs. 

• Few-revolution low-thrust transfers: the current support of low-thrust trajectories in SALTO 

is limited to many-revolution transfers, where the change of orbital elements over one 

revolution is small enough to be averaged over, and low-thrust from impulsive initial 

guesses. It is envisioned to add a GuessGenerator that can create low-thrust initial 

guesses based on a collocation method for few revolution transfer. This addition will be 

useful for interplanetary low-thrust missions. 

• Lunar transfers: support of lunar Hohmann transfers between Earth and Moon will be rather 

straightforward to implement with the existing code base. Additionally, low-energy transfers 

that use lunar resonances [16] or go via the Weak Stability Boundary [17] shall also be 

supported. 

• Non-Keplerian target orbits: currently only Keplerian insertion orbits are supported via the 

implemented StateSegment types. For some mission types, such as lunar missions 

involving an NRHO, this is not sufficient. A support of non-Keplerian target orbits shall the 

added to SALTO to cover such missions. 

• Linking of mission phases: the software structure is very suitable for designing different 

parts of a mission (e.g. interplanetary transfer and moon tour) separately and then linking 

them together by closing potential state and time gaps between the phases. 

6 ANNEX: TISSERAND GRAPHS 

To make this paper as self-contained as possible, this annex explains the basics of the Tisserand 

graph, which is extensively used in SALTO: when designing multi-flyby trajectories, it can be 

useful to start with a model where all planet orbits are circular and planar and the spacecraft 

trajectory is also confined to the plane. Then, all spacecraft orbits crossing a planet at a given 

infinite velocity can conveniently be represented as a contour line in a graph with the aphelion and 

perihelion radii on its axes (see Figure 9). Since a planetary flyby does not change the infinite 

velocity magnitude, orbits connected by a flyby will all be located on the same contour line. This is 

very handy because it shows at a single glance what aphelion and perihelion radii can be reached 

using flybys. 

 

https://www.space-codev.org/
https://www.space-codev.org/
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Figure 9: The family of orbits crossing the Earth with an infinite velocity of 8 km/s (left) and the corresponding 

contour line in the Tisserand graph (right). The black dots indicate the orbits shown on the left. 

 

This aphelion-perihelion representation is called a Tisserand graph. Its full potential for trajectory 

design becomes apparent, when contour lines of all planets are superimposed in the same plot and 

the maximum allowed travel distances (due to the minimum flyby altitude constraint) along the 

contour lines are also indicated (see Figure 10). A point in the plot represents a spacecraft orbit. It is 

immediately apparent which planet orbits are crossed by a given orbit and at what infinite velocity 

the encounter occurs. A displacement along a contour line represents a flyby. 

 

 
Figure 10: Tisserand graph for Venus, Earth, Mars and Jupiter. The contour lines are spaced by 2 km/s in 

infinite velocity. The dots on the contour lines indicate the maximum distance by which a 300 km altitude flyby 

can change the orbit. 

 

A path along the different contour lines represents an interplanetary trajectory with flybys, such as 

the one shown in Figure 1. The graph is very helpful for finding suitable planet sequences for 

interplanetary missions. For instance, the JUICE transfer aims at starting at Earth with an infinite 

velocity around 3 km/s and arriving at Jupiter minimising the infinite velocity. This fixes the start 

and end point of the trajectory in the graph. By manually testing different ways of connecting these 
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two points, it quickly becomes apparent that certain planet sequences, like the famous Earth-Venus-

Earth-Earth-Jupiter sequence is expected to work particularly well. 

Tisserand graphs are tools to solve the transfer problem from the energetic perspective, i.e. they 

neglect the phasing between the planets and the spacecraft, but their simplicity has made them a 

popular means for preliminary trajectory design. 

Tisserand graphs can be extended for the use with low-energy transfers, i.e. weak stability boundary 

transfers, lunar resonances and weak capture (see [18] for details). They can therefore support initial 

guess generation for a wide class of mission types in a tool like SALTO, where large state and time 

gaps are allowed at the initial stage. 
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